A Posteriori Error Estimates on Stars for Convection Diffusion Problem
نویسندگان
چکیده
منابع مشابه
A Posteriori Error Estimates on Stars for Convection Diffusion Problem
In this paper, a new a posteriori error estimator for nonconforming convection diffusion approximation problem, which relies on the small discrete problems solution in stars, has been established. It is equivalent to the energy error up to data oscillation without any saturation assumption nor comparison with residual estimator.
متن کاملRobust A Posteriori Error Estimates for Stationary Convection-Diffusion Equations
We analyze a posteriori error estimators for finite element discretizations of convec-tion-dominated stationary convection-diffusion equations using locally refined, isotropic meshes. The estimators are based on either the evaluation of local residuals or the solution of discrete local problems with Dirichlet or Neumann boundary conditions. All estimators yield global upper and lower bounds for...
متن کاملRobust A Posteriori Error Estimates for Nonstationary Convection-Diffusion Equations
We consider discretizations of convection dominated nonstationary convectiondiffusion equations by A-stable θ-schemes in time and conforming finite elements in space on locally refined, isotropic meshes. For these discretizations we derive a residual a posteriori error estimator. The estimator yields upper bounds on the error which are global in space and time and lower bounds that are global i...
متن کاملOn a Posteriori Error Estimates for One-dimensional Convection-diffusion Problems
This paper is concerned with the upwind finite-difference discretization of a quasilinear singularly perturbed boundary value problem without turning points. Kopteva’s a posteriori error estimate [N. Kopteva, Maximum norm a posteriori error estimates for a onedimensional convection-diffusion problem, SIAM J. Numer. Anal., 39, 423–441 (2001)] is generalized and improved. 2000 MSC: 65L10, 65L70.
متن کاملA posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation
In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Modelling of Natural Phenomena
سال: 2010
ISSN: 0973-5348,1760-6101
DOI: 10.1051/mmnp/20105711